Highly *cis*-Diastereoselective Synthesis of Coumarin-Based 2,3-Disubstituted Dihydrobenzothiazines by Organocatalysis

by Mehdi Khoobi^a)^b), Ali Ramazani^{*a}), Alireza Foroumadi^b), Saeed Emami^c), Farnaz Jafarpour^d), Amir Mahyari^a), Katarzyna Ślepokura^c), Tadeusz Lis^c), and Abbas Shafiee^{*b})

^a) Chemistry Department, Zanjan University, P.O. Box 45195-313, Zanjan, Iran (phone: +982415152572; fax: +982415152477; e-mail: aliramazani@yahoo.com)
^b) Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176, Iran (phone: +9866406757; fax: +9866461178; e-mail: ashafiee@ams.ac.ir)
^c) Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
^d) School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, Iran

^e) Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St., PL-50-383 Wrocław

An efficient and organocatalyzed asymmetric reaction of phenacyl halides with coumarin-based dihydrobenzothiazoles was developed to afford *cis*-2,3-disubstituted 3,4-dihydro-2*H*-benzothiazines. This method provides a one-step and highly diastereoselective route to a wide variety of coumarin-based 3,4-dihydro-2*H*-benzothiazines using the cheap and commercially available *Cinchona* alkaloid quinine hydrochloride.

Introduction. - In the field of N,S-heterocycles, benzothiazine derivatives have attracted great interest as they exhibit diverse biological and pharmacological activities [1]. They also have been reported as key intermediates in the synthesis of red-hair pigment pheomelanins [2]. Furthermore, great efforts have been focused on the synthesis of thiazoles and fused thiazoles containing coumarins with antimicrobial and anti-inflammatory activities [3]. However, no catalytic asymmetric synthesis of these interesting structures has been reported to date. Accordingly, the development of a highly efficient and stereoselective methodology seems necessary. In the past few years, organocatalysis has emerged as an important tool for stereoselective formation of C,C and carbon, heteroatom bonds [4]. In this regard, Cinchona alkaloids have attracted great interest as they provide non-covalent activation of the reacting partners in several asymmetric transformations and lead to generally highly stereochemically controlled reactions [5]. Here, we report the diastereoselective synthesis of coumarin-based dihydrobenzothiazines via ring expansion of dihydrobenzothiazoles assisted by organocatalysis with Cinchona alkaloids. This protocol is based on an extension of a method reported by Mashraqui and Kellogg [6] and takes the advantage of highly diastereoselective construction of dihydrobenzothiazines, which bear substituted benzoyl and coumarin motifs, utilizing readily available Cinchona alkaloids.

Results and Discussion. – The starting dihydrobenzothiazoles 1a - 1d were easily prepared in excellent yields by the standard protocol recently developed in our

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

laboratory [7]. First, we examined the reaction of dihydrobenzothiazole **1a** with different phenacyl bromides 2a - 2d under various basic conditions at room temperature in order to evaluate their efficiency and diastereoselectivity (*Table 1*).

 Table 1. Screening of the Reaction Conditions for the Preparation of Coumarin-Based 2,3-Disubstituted

 3,4-Dihydro-2H-benzothiazines

Entry	R	Base	Solvent	Time [h]	Yield ^a) [%]	cis/trans Ratiob)
1	Me (2a)	K_2CO_3 (1.5 equiv.)	Acetone	12	60	31:69
2	Me (2a)	K_2CO_3 (1.5 equiv.)	CHCl ₃	12	74	46:54
3	Me (2a)	KOH (1 equiv.)	EtOH	5	71	33:67
4	Me (2a)	KOH (1 equiv.)	CHCl ₃	6	74	48:52
5	Me (2a)	DBU ^c)	CHCl ₃	5	80	48:52
6	Me (2a)	DABCO ^d)	CHCl ₃	7	78	45:52
7	Me (2a)	KF (10 equiv.)	CHCl ₃	6	90	50:50
8	Me (2a)	$KF/Al_2O_3^{e}$ (0.7 g)	CHCl ₃	4	96	50:50
9	$NO_2(2b)$	KF/Al_2O_3 (0.7 g)	CHCl ₃	4	92	43:57
10	Br (2c)	KF/Al_2O_3 (0.7 g)	CHCl ₃	5	94	50:50
11	MeO (2d)	KF/Al_2O_3 (0.7 g)	CHCl ₃	5	90	46:54
12	Me (2a)	KF/Al_2O_3 (0.7 g)	CH_2Cl_2	4	94	48:52
13	Me (2a)	KF/Al_2O_3 (0.7 g)	EtOH	7	75	44:65
14	Me (2a)	KF/Al_2O_3 (0.7 g)	MeCN	5	90	86:14
16	Me (2a)	KF/Al_2O_3 (0.7 g)	DMF	4	90	20:80
17	Me (2a)	$KF/Al_2O_3 (0.7 g)$	NMP ^f)	6	86	44:56

^a) Yields of the isolated products. ^b) Diastereoisomer ratios determined by NMR analysis. ^c) 1,8-Diazabicyclo[5.4.0]undec-7-ene. ^d) 1,4-Diazabicyclo[2.2.2]octane. ^e) KF/Al₂O₃ was prepared according to the reported procedure in which the content of KF is *ca.* 40% (*m/m*) [8]. ^f) 1-Methylpyrrolidin-2-one.

The results revealed that the corresponding dihydrobenzothiazine derivatives 3-6 could be conveniently prepared in the presence of KF/Al₂O₃ in excellent yields, but the products were obtained as mixtures of *cis/trans* diastereoisomers. According to the work of *Mashraqui* and *Kelogg* [6], we propose a mechanism for this reaction as depicted in the *Scheme*.

It seems that the reaction is initiated by generation of intermediate **A**, which is produced by ring opening of dihydrobenzothiazole **1a** under basic condition. In the next step, the nucleophilic attack of the formed thiol to 'soft' center of phenacyl bromide **2a**, followed by enolate formation results in intermediate **B**. This is an important intermediate to produce two stereogenic centers. Finally, an interamolecular

Scheme. Proposed Reaction Mechanism Leading to 3,4-Dihydro-2H-1,4-benzothiazine Consisting of Two Diastereoisomers

Mannich-type reaction results in *cis/trans* adducts of **3** by means of a 6-*endo*-trig C–C bond-forming reaction.

In the previous report published by *Mashraqui* and *Kellogg*, it has been mentioned that the *trans*-isomer of 2,3-disubstituted-3,4-dihydro-2*H*-1,4-benzothiazine was the major product, with a lower chemical shift of H–C(2) of the benzothiazine ring with respect to the *cis*-isomer in the ¹H-NMR spectrum [6]. By comparing a set of ¹H-NMR spectra, it was found that the diastereoisomer ratio (dr) of *cis/trans*-dihydrobenzothiazines can be determined by the integration of the benzothiazine H–C(2) signal as an internal probe. For example, the *trans*-isomer **3b** is readily identified, because the H–C(2) absorbs at 5.67 ppm, *i.e.*, it is shielded with respect to 6.00 ppm for the *cis*-isomer **3a** (*Fig. 1*).

Fig. 1. The comparison of H-C(2) chemical shifts in cis- and trans-isomers. The selected ¹H-NMR data of 3-Ph analogs was reported by *Mashraqui* and *Kellogg* [6].

As shown in *Table 1*, the *cis*-diastereoisomer **3a** was the major product in MeCN as solvent (*Table 1*, *Entry 14*), but, in CH_2Cl_2 , $CHCl_3$, and NMP (1-methylpyrrolidin-2-one), diastereoselectivity decreased (*Table 1*, *Entries 8*, *12*, and *17*). Also, DMF and EtOH converted diastereoselectivity in favor of the *trans*-diastereoisomer (*Table 1*, *Entries 16* and *13*). In addition, the results revealed that the type of base and variation of the phenacyl bromide do not significantly affect the diastereoselectivity (*Table 1*).

To the best of our knowledge, there has been no report on the asymmetric reaction of dihydrobenzothiazoles and phenacyl bromides *via* an interamolecular *Mannich*-type reaction to give dihydrobenzothiazines. In light of the capacity of *Cinchona* alkaloids and amino acids in various organocatalytic transformations, especially in *Mannich* reactions [9], and the importance of the development of highly diastereoselective organocatalytic approaches, we probed the reaction between dihydrobenzothiazole **1a** and 2-bromo-1-(4-methylphenyl)ethanone (**2a**) in the presence of some of *Cinchona* alkaloids (*Fig. 2*) and amino acids.

Fig. 2. The structures of Cinchona alkaloids used in our study

The screening of reactions was performed with some organocatalysts such as natural alkaloids as well as α -amino acids in CH₂Cl₂. While quinine showed slight diastereoselectivity in CH₂Cl₂ (*Table 2, Entry 12*), some amino acids gave the desired product in good-to-high diastereoselectivity in favor of the diastereoisomer **3b** (*Table 2, Entries 8–11*).

0 Ō MeH MeH 0 Organocat. 1a s Ĥ Ĥ KF/Al₂O₃, r.t., solvent Br 3b (trans) 2a 3a (cis) Entry^a) Organocatalyst Solvent *t* [h] Yield^b) [%] dr^c) 3a (cis)/3b (trans) 48:52 1 CH_2Cl_2 4 94 2 L-Proline CH_2Cl_2 4 94 34:66 3 49:51 L-Proline MeCN 3 95 4 L-Proline DMF 3 95 43:57 5 35:65 L-Proline Toluene 6 74 6 L-Proline EtOH 10 67 66:34 7 N-benzyl-L-Proline CH_2Cl_2 5 88 48:52 8 12 92 L-Alanine CH_2Cl_2 26:74 9 L-Methionine CH_2Cl_2 12 80 20:80 10 N-Acetyl-L-cysteine CH_2Cl_2 12 88 17:83 11 L-Serine CH_2Cl_2 12 90 14:86 12 Quinine CH_2Cl_2 3 96 42:58 4 13 Quinine Toluene 84 28:72 14 Quinine EtOH 2 80 88:12 2 15 t-Butyl (2S)-2-(hydroxymethyl)-MeCN 91 95:5 pyrrolidine-1-carboxylate 16 t-Butyl (2S)-2-(hydroxymethyl)-DMF 3 90 50:50 pyrrolidine-1-carboxylate 17 Quinine hydrochloride EtOH 3 78 100:03 18 Quinine hydrochloride MeCN 91 67:33 19 Cinchonidine 2 100:0 EtOH 73 20 Cinchonine EtOH 2 78 100:0

Table 2. Organocatalyzed Synthesis of Compound 3

Replacing CH_2Cl_2 with toluene as solvent, led to increased diastereoselectivity for quinine as catalyst in favor of **3b** (*Table 2*, *Entry 13*). Furthermore, the reaction was very sensitive to the nature of the employed solvent, and the diastereoselectivity

^a) Reaction conditions: **1a** (1.0 mmol), **2a** (1.2 mmol), organocatalyst (10 mol-%), and KF/Al₂O₃ (0.7 g) in solvent (3.0 ml) at r.t. ^b) Yields of isolated products. ^c) Diastereoisomer ratios (dr) determined by ¹H-NMR analysis.

changed in favor of **3a**, when EtOH was used as the solvent (*Table 2, Entry 14*). It is noteworthy that, in EtOH as the solvent and in the absence of a catalyst, the mixture of two diastereoisomers was obtained in 75% yield with low diastereoselectivity (*Table 1, Entry 13*). The *cis*-diastereoselectivity was even improved by using *tert*-butyl (2S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (*Table 2, Entry 15*). Most remarkably, natural alkaloids such as quinine hydrochloride, cinchonidine, and cinchonine afforded the desired product as a single *cis*-diastereoisomer in EtOH (*Table 2, Entries 17, 19*, and 20).

It should be mentioned that the reaction did not run in the presence of quinine (up to 50 mol-%) and in the absence of KF/Al₂O₃ after 12 h at room temperature. In addition, according to the results of other parallel reactions, quinine hydrochloride for the reaction of other phenacyl bromides, **2b** and **2c**, with coumarin **1a** was preferred over cinchonidine and cinchonine. On the whole, we were delighted to see that, under the optimized conditions, the reaction of coumarin **1a** (1.0 mmol), **2a** (1.2 mmol, 1.2 equiv.), quinine hydrochloride (10 mol-%), and KF/Al₂O₃ (0.7 g) in EtOH (3.0 ml) at room temperature for 3 h afforded exclusively the *cis*-diastereoisomer of **3a** in 78% yield (*Table 2, Entry 17*).

Encouraged by these results, we sought to generalize the scope of the reaction by using various substituted coumarins and phenacyl halides (*Table 3*). The results revealed that phenacyl halides bearing both electron-donating and -withdrawing

Table 3. Scope of Diastereoselective Synthesis of Coumarin-Based 3,4-Dihydro-2H-benzothiazines 3-13

^a) Reaction conditions: Coumarin **1** (1.0 mmol), phenacyl halide **2** (1.2 mmol), quinine hydrochloride (10 mol-%), and KF/Al₂O₃ (0.7 g) in EtOH (3.0 ml) at r.t. ^b) Yields of isolated products. ^c) Diastereoisomer ratios (dr) determined by NMR analysis. ^d) cPentO: Cyclopentyloxy.

groups on the phenyl ring such as Me, MeO, NO₂, halo, and MeSO₂ groups were well tolerated under the optimized reaction conditions, and the desired products were obtained in high yields with *cis*-diastereoselectivity (*Table 3, Entries 1–7*). However, the reactivity as well as the level of stereoselectivity was influenced by the nature of substituents on the coumarin ring. Coumarins bearing 8-MeO or 6-Br groups showed inferior stereoselectivity (*Table 3, Entries 8* and 9). In addition, to investigate the steric compatibility of this stereoselective reaction, a sterically more hindered phenacyl bromide **2h** was selected, and dihydrobenzothiazine derivative **12** was obtained in 78% yield (*Table 3, Entry 10*). In this case, the diastereoselectivity was influenced by the steric hindrance of the substituent on phenacyl bromide, and the diastereoselectivity changed in favor of the isomer **12b**. It should be mentioned that, despite high and versatile diastereoselectivities, no enantioselectivity was observed within the scope of the reaction.

Furthermore, the diastereoselective quinine hydrochloride-catalyzed reaction of dihydrobenzothiazoles to *cis*-dihydrobenzothiazines was also successfully scaled up. We performed a scale-up reaction employing 10.0 mmol of coumarin **1a** and 12.0 mmol of 2-bromo-1-[4-(methylsulfonyl)phenyl]ethanone (**2g**) to give the desired product **9** in 90% yield and 98% de.

The compound **10b** (*trans*-diastereoisomer, *Table 3*, *Entry 8*) with a lower solubility in MeCN could be separated and isolated in pure form as suitable crystals for X-ray crystallography (CCDC-789191M; *Fig. 3*). The ORTEP plot clearly shows that the adjacent C(7)–C(19) (ORTEP numbering) substituents have the *trans*-configuration, which is in agreement with our earlier assigned configuration based on ¹H-NMR data. Unfortunately, crystals of the *cis*-diastereoisomer **10a** were unsuitable for structural

Fig. 3. *Single-crystal X-ray structure of one enantionmer of* **10b** (displacement ellipsoids at 50% probability level). The intramolecular C–H…O contacts are shown with dashed lines.

determination. Nevertheless, on the basis of the greater δ value [6] and X-ray crystal structure of the *trans*-diastereoisomer, our suggestion was unambiguously confirmed.

Based on experimental results, we proposed a model to rationalize the observed quinine-catalyzed cis-diastereoselectivity in the preparation of coumarin-based dihydrobenzothiazines (Fig. 4). With the key insight into the active conformer of the quinine, the kinetic results are consistent with an acid-base bifunctional catalysis mode [10], and the observed solvent effect indicate that H-bond interactions between the catalyst and the substrates play an important role. Therefore, we propose the transitionstate model C or D to rationalize the stereochemical outcome of this asymmetric intramolecular Mannich-type reaction (Fig. 4). The enolization of the phenacyl moieties in the intermediates can be catalyzed by KF/Al₂O₃, as well as the tertiary amine group of quinine. Quinine, as a bifunctional catalyst, could coordinate with the imine group of the intermediate through H-bond interaction with the OH group. Chelation of the C=O group of the coumarin moiety with the OH moiety of quinine provides excellent stereocontrol in the reaction (Fig. 4; C). This chelating may be facilitated by EtOH as protic solvent (Fig. 4; D). In addition, the electrostatic interactions in the tight-ion pair model of Corey [11] between the quaternary ammonium salt and enolate can play an important role for the catalytic process and the cis selectivity.

Fig. 4. Transition-state models for organocatalysis by quinine

In contrast to the observed *cis*-diastereoselectivity in the catalytic process by quinine, no enantioselectivity was observed in the asymmetric intramolecular *Mannich*-type reaction of the enolate intermediate. The lack of enantioselectivity *via* enolate intermediate was attributed to the free rotation of two pendant groups on the amino-thiophenol. The enolate intermediate may adopt two possible conformations that are mirror images to each other (*Fig. 5*). It is obvious from *Fig. 5* that quinine-catalyzed asymmetrization of the enolate intermediate showed no enantioselectivity, and both enantiomers of *cis*-isomer could be formed.

Conclusions. – In summary, we have developed a highly diastereoselective one-step synthesis of *cis*-2,3-disubstituted dihydrobenzothiazines, which contain coumarin scaffolds, and which are not easily accessible by conventional methods. A systematic study on the reaction of different phenacyl halides with coumarin-based dihydroben-

Fig. 5. cis-Diastereoselectivity in organocatalysis by quinine and the lack of enantioselectivity

zothiazoles by using commercially available organocatalysts revealed that the desired products could be obtained with high *cis*-diastereoselectivity in high yields, utilizing non-expensive quinine hydrochoride as the catalyst, and in protic rather than aprotic solvents.

Experimental Part

1. General. All reagents and catalysts were commercially available and used as received. Compounds 1a-1d were prepared as reported in [7]. Alumina-supported potassium fluoride (KF/Al₂O₃) was prepared as described in [8]. M.p.: *Kofler* hot stage apparatus; uncorrected. IR Spectra: *Nicolet Magna* 550-FT spectrometer. ¹H- and ¹³C-NMR spectra: *Bruker FT-500* spectrometer; TMS as an internal standard. MS: *Finnigan MAT TSQ-70* spectrometer. Elemental analyses: *Perkin-Elmer* model 240-C apparatus; the results (C, H, N) within $\pm 0.4\%$ of the calculated values.

2. Typical Procedure for Diastereoselective Synthesis of Coumarin-Based Dihydrobenzothiazines. A suspension of the coumarin 1a - 1d (1.0 mmol), KF/Al₂O₃ (0.7 g), and quinine hydrochloride (10 mol-%) in EtOH (3.0 ml) was stirred at r.t. for 5 min. Then, phenacyl halide 2a - 2h (1.2 mmol) was added to the mixture, which was stirred for appropriate time. Progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure. Then, AcOEt (5 ml) was added, and the catalyst was filtered and washed with AcOEt (3 × 5 ml). Removal of the solvent gave a crude mixture, which was purified by column chromatography (CC; hexane/AcOEt 9:1).

3-[3,4-Dihydro-3-methyl-2-(4-methylbenzoyl)-2H-1,4-benzothiazin-3-yl]-2H-1-benzopyran-2-one (**3a**). Yellow solid (330 mg, 78%). *cis*-Isomer. M.p. 203–205°. IR: 3363 (NH), 1716 (C=O). ¹H-NMR (CDCl₃): 1.77 (*s*, Me of benzothiazine); 2.45 (*s*, $Me-C_6H_4$); 4.52 (br. *s*, NH); 6.00 (*s*, 1 H of benzothiazine); 6.73 (*t*, J = 7.5, 1 H); 6.93–6.95 (*m*, 2 H); 7.12 (*t*, J = 8.0, 1 H); 7.23 (*t*, J = 7.5, 1 H); 7.41 (*d*, J = 8.0, 1 H); 7.50 (*t*, J = 8.0, 1 H); 7.80 (*s*, 1 H); 7.95 (*d*, J = 8.0, 1 H); 7.95 (*d*

 $J = 8.0, 2 \text{ H}). \ ^{13}\text{C-NMR} \ (125 \text{ MHz, CDCl}_3): 21.6; 24.6; 37.4; 57.6; 112.4; 116.1; 117.0; 119.2; 119.3; 124.3; 126.5; 128.3; 128.4; 128.7; 129.4; 131.3; 131.4; 134.3; 139.6; 140.9; 144.0; 153.2; 161.2; 192.6. EI-MS: 427 (3,$ *M* $⁺), 279 (40), 167 (82), 149 (100), 71 (48), 57 (68), 43 (54). Anal. calc. for C_{26}H_{21}NO_3S (427.51): C 73.04, H 4.95, N 3.28; found: C 72.90, H 4.71, N 3.50.$

 $\begin{array}{l} 3-[3,4-Dihydro-3-methyl-2-(4-methylbenzoyl)-2H-1,4-benzothiazin-3-yl]-2H-1-benzopyran-2-one\\ \textbf{(3b)}. Yellow solid. trans-Isomer. IR: 3363 (NH), 3065, 2970, 2934, 1716 (C=O), 1603, 1475, 1448, 1324, 1176, 749. ¹H-NMR (CDCl₃): 1.87 ($ *s*, Me of benzothiazine); 2.36 (*s* $, <math>Me-C_6H_4$); 4.60 (*s*, NH); 5.67 (*s*, 1 H of benzothiazine); 6.79 (*t*, J = 7.2, 1 H); 6.98 (*d*, J = 7.9, 1 H); 7.05 (*d*, J = 7.7, 1 H); 7.08 (*t*, J = 6.8, 1 H); 7.18 (*d*, J = 8.0, 2 H); 7.24 - 7.26 (*m*, 2 H); 7.47 (*t*, J = 7.2, 1 H); 7.52 (*d*, J = 7.7, 1 H); 7.73 (*d*, J = 8.0, 2 H); 8.17 (*s*, 1 H). ¹³C-NMR (125 MHz, CDCl₃): 21.6; 27.5; 43.4; 56.0; 112.5; 114.1; 118.0; 119.2; 119.7; 124.3; 126.4; 128.0; 128.4; 128.9; 129.4; 131.4; 132.0; 133.8; 140.2; 140.9; 143.6; 146.3; 160.2; 192.8. EI-MS: 427 (*s*, M^+), 279 (40), 167 (82), 149 (100), 71 (48), 57 (68), 43 (54). Anal. calc. for C₂₆H₂₁NO₃S (427.51): C 73.04, H 4.95, N 3.28; found: C 73.15, H 5.21, N 3.02.

3-[3,4-Dihydro-3-methyl-2-(4-nitrobenzoyl)-2H-1,4-benzothiazin-3-yl]-2H-1-benzopyran-2-one (4a). Red crystal (357 mg, 78%). *cis*-Isomer. M.p. 214–216°. IR: 3394 (NH), 1693 (C=O), 1518 (NO₂), 1335 (NO₂). ¹H-NMR (CDCl₃): 1.81 (*s*, Me of benzothiazine); 4.52 (*s*, NH); 6.00 (*s*, 1 H of benzothiazine); 6.74 (*t*, J = 7.3, 1 H); 6.90 (*d*, J = 7.3, 1 H); 6.95 (*d*, J = 7.3, 1 H); 7.15 (*t*, J = 8.0, 1 H); 7.26 (*t*, J = 7.3, 1 H); 7.36 (*d*, J = 8.0, 1 H); 7.42 (*d*, J = 8.0, 1 H); 7.52 (*t*, J = 8.0, 1 H); 7.80 (*s*, 1 H); 8.13 (*d*, J = 8.5, 2 H); 8.31 (*d*, J = 8.5, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.4; 38.3; 57.6; 110.9; 116.2; 116.9; 119.0; 119.5; 123.9; 124.5; 127.1; 128.5; 128.6; 129.5; 130.9; 131.7; 139.5; 141.3; 141.4; 150.1; 153.2; 161.3; 190.2. EI-MS: 458 (60, M^+), 440 (13), 334 (100), 308 (90), 294 (45), 274 (63). Anal. calc. for C₂₅H₁₈N₂O₅S (458.49): C 65.49, H 3.96, N 6.11; found: C 65.22, H 3.71, N 6.31.

*3-[2-(4-Bromobenzoyl)-3,4-dihydro-3-methyl-*2H-*1,4-benzothiazin-3-yl]-*2H-*1-benzopyran-2-one* (**5a**). Yellow solid (393 mg, 80%). *cis*-Isomer. M.p. 95–97°. IR: 3386 (NH), 1708 (C=O). ¹H-NMR (CDCl₃): 1.87 (*s*, Me of benzothiazine); 4.50 (*s*, NH); 5.95 (*s*, 1 H of benzothiazine); 6.73 (*t*, *J* = 7.3, 1 H); 6.91–6.93 (*m*, 2 H); 7.12 (*t*, *J* = 7.3, 1 H); 7.23 (*t*, *J* = 7.3, 1 H); 7.35 (*d*, *J* = 8.0, 1 H); 7.40 (*d*, *J* = 8.0, 1 H); 7.50 (*t*, *J* = 8.0, 1 H); 7.62 (*d*, *J* = 8.5, 2 H); 7.78 (*s*, 1 H); 8.88 (*d*, *J* = 8.5, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.5; 37.5; 55.6; 111.8; 116.1; 116.9; 119.1; 119.4; 124.4; 126.7; 128.3; 128.4; 130.0; 131.1; 131.5; 131.9; 132.0; 135.5; 139.5; 141.1; 153.3; 161.3; 191.6. EI-MS: 493 (31, $[M + 2]^+$), 491 (29, M^+), 369 (49), 368 (47), 308 (100), 294 (51), 280 (64), 185 (32), 155 (15), 76 (13). Anal. calc. for C₂₅H₁₈BrNO₃S (492.38): C 60.98, H 3.68, N 2.84; found: C 70.15, H 3.49, N 2.68.

*3-[3,4-Dihydro-2-(4-methoxybenzoyl)-3-methyl-*2H-*1,4-benzothiazin-3-yl]-*2H-*1-benzopyran-2-one* (**6a**). Yellow solid (363 mg, 82%). *cis*-Isomer. M.p. 195–197°. IR: 3363 (NH), 1712 (C=O). ¹H-NMR (CDCl₃): 1.76 (*s*, Me of benzothiazine); 3.89 (*s*, MeO); 4.52 (*s*, NH); 5.99 (*s*, 1 H of benzothiazine); 6.73 (*t*, J = 7.3, 1 H); 6.94–6.96 (*m*, 4 H); 7.11 (*t*, J = 7.3, 1 H); 7.23 (*t*, J = 7.3, 1 H); 7.36 (*d*, J = 8.0, 1 H); 7.41 (*d*, J = 7.3, 1 H); 7.50 (*t*, J = 7.3, 1 H); 7.80 (*s*, 1 H); 8.04 (*d*, J = 8.5, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.7; 37.1; 55.5; 57.6; 112.6; 113.9; 116.1; 117.0; 119.2; 119.3; 124.3; 126.4; 128.2; 128.4; 129.8; 130.9; 131.4; 139.5; 140.9; 153.2; 161.2; 163.6; 191.9. Anal. calc. for C₂₆H₂₁NO₄S (443.51): C 70.41, H 4.77, N 3.16; found: C 70.28, H 4.91, N 3.36.

3-(2-Benzoyl-3,4-dihydro-3-methyl-2H-1,4-benzothiazin-3-yl)-2H-1-benzopyran-2-one (**7a**). Yellow solid (338 mg, 82%). *cis*-Isomer. M.p. 174–176°. IR : 3409 (NH), 1708 (C=O). ¹H-NMR (CDCl₃): 1.78 (*s*, Me of benzothiazine); 4.54 (*s*, NH); 6.02 (*s*, 1 H of benzothiazine); 6.72 (*t*, J = 7.3, 1 H); 6.92–6.94 (*m*, 2 H); 7.12 (*t*, J = 7.3, 1 H); 7.22 (*t*, J = 7.3, 1 H); 7.35 (*d*, J = 7.3, 1 H); 7.48 (*d*, J = 7.3, 1 H); 7.57–7.59 (*m*, 3 H); 7.57 (*t*, J = 7.3, 1 H); 7.79 (*s*, 1 H); 8.03 (*d*, J = 7.5, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.6; 37.5; 57.6; 112.1; 116.1; 117.0; 119.2; 119.3; 124.4; 126.6; 128.4; 128.5; 128.7; 131.3; 131.4; 133.1; 136.8; 139.6; 141.0; 153.2; 161.2; 192.7. Anal. calc. for C₂₅H₁₉NO₃S (413.49): C 72.62, H 4.63, N 3.39; found: C 72.36, H 4.88, N 3.11.

3-[2-(1,1'-Biphenyl-4-ylcarbonyl)-3,4-dihydro-3-methyl-2H-1,4-benzothiazin-3-yl]-2H-1-benzopyran-2-one (**8a**). Yellow solid (362 mg, 74%). cis-Isomer. M.p. 224–226°. IR: 3379 (NH), 3048, 3021, 2976, 2918, 1703 (C=O), 1668, 1600, 1476, 1362, 1163, 760. ¹H-NMR (CDCl₃): 1.82 (s, Me of benzothiazine); 4.14 (br. s, NH); 6.08 (s, 1 H of benzothiazine); 6.75 (t, J = 7.3, 1 H); 6.95–6.98 (m, 2 H); 7.14 (t, J = 7.3, 1 H); 7.24 (t, J = 7.3, 1 H); 7.37 (d, J = 8.0, 1 H); 7.41–7.43 (m, 2 H); 7.49–7.51 (m, 3 H); 7.65 (d, J = 7.3, 2 H); 7.73 (d, J = 8.3, 2 H); 7.82 (s, 1 H); 8.13 (d, J = 8.3, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.6; 37.5; 57.6; 112.1; 116.1; 117.0; 119.1; 119.3; 124.3; 126.6; 127.2; 127.4; 128.2; 128.4; 128.9; 129.1; 131.3; 131.4; 135.4; 139.6; 139.8; 141.0; 145.7; 153.2; 161.2; 192.3. Anal. calc. for $C_{31}H_{23}NO_3S$ (489.58): C 76.05, H 4.74, N 2.86; found: C 76.23, H 4.39, N 2.53.

3-{3,4-Dihydro-3-methyl-2-[4-(methylsulfonyl)benzoyl]-2H-1,4-benzothiazin-3-yl]-2H-1-benzopyran-2-one (**9a**). Yellow solid (457 mg, 93%). *cis*-Isomer. M.p. 231–233°. IR: 3398 (NH), 1712 (C=O), 1301 (SO₂), 1153 (SO₂). ¹H-NMR (CDCl₃): 1.81 (*s*, Me of benzothiazine); 3.10 (*s*, MeSO₂); 4.53 (*s*, NH); 6.01 (*s*, 1 H of benzothiazine); 6.75 (*t*, J = 7.5, 1 H); 6.92 (*d*, J = 7.5, 1 H); 6.97 (*d*, J = 7.5, 1 H); 7.15 (*t*, J =7.5, 1 H); 7.26 (*t*, J = 7.3, 1 H); 7.38 (*d*, J = 8.0, 1 H); 7.44 (*d*, J = 8.0, 1 H); 7.53 (*t*, J = 8.0 Hz, 1 H); 7.81 (*s*, 1 H); 8.07 (*d*, J = 8.5, 2 H); 8.17 (*d*, J = 8.5, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.4; 38.2; 44.3; 57.6; 110.9; 116.1; 116.9; 119.0; 119.4; 124.5; 127.0; 127.8; 128.4; 128.5; 129.3; 130.9; 131.6; 139.6; 140.8; 141.3; 143.9; 153.2; 161.2; 190.6. EI-MS: 491 (33, M^+), 473 (83), 458 (72), 367 (94), 328 (28), 308 (100), 294 (61), 274 (69), 185 (41), 121 (27). Anal. calc. for C₂₆H₂₁NO₅S₂ (491.58): C 63.53, H 4.31, N 2.85; found: C 63.38, H 4.66, N 3.11.

3-[3,4-Dihydro-3-methyl-2-(4-nitrobenzoyl)-2H-1,4-benzothiazin-3-yl]-8-methoxy-2H-1-benzopyran-2-one (**10a**). Orange crystals (400 mg, 82%). *cis*-Isomer. M.p. 125 – 127°. IR: 3401 (NH), 1701 (C=O), 1526 (NO₂), 1351 (NO₂). ¹H-NMR (CDCl₃): 1.82 (*s*, Me of benzothiazine); 3.99 (*s*, MeO); 4.51 (*s*, NH); 6.01 (*s*, 1 H of benzothiazine); 6.75 (*t*, J = 7.3, 1 H); 6.91 (*d*, J = 8.0, 1 H); 6.95 (*d*, J = 7.3, 1 H); 7.07 (*d*, J = 8.0, 1 H); 7.16 – 7.18 (*m*, 2 H); 7.78 (*s*, 1 H); 8.15 (*d*, J = 8.5, 2 H); 8.33 (*d*, J = 8.5, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.4; 38.3; 56.3; 57.7; 110.9; 113.4; 116.9; 119.4; 119.7; 119.8; 123.9; 124.3; 127.1; 128.6; 129.5; 131.1; 139.5; 141.3; 141.4; 142.9; 146.9; 150.1; 160.7; 190.2. EI-MS: 488 (29, M^+), 364 (100), 338 (69), 324 (44), 304 (43), 150 (20), 104 (19), 76 (17). Anal. calc. for C₂₆H₂₀N₂O₆S (488.51): C 63.92, H 4.13, N 5.73; found: C 63.79, H 4.34, N 5.48.

6-Bromo-3-{3,4-dihydro-3-methyl-2-[4-(methylsulfonyl)benzoyl]-2H-1,4-benzothiazin-3-yl]-2H-1benzopyran-2-one (**11a**). Yellow solid (381 mg, 68%). *cis*-Isomer. M.p. 169–171°. IR: 3351 (NH), 1690 (C=O), 1303 (SO₂), 1184 (SO₂). ¹H-NMR (CDCl₃): 1.80 (*s*, Me of benzothiazine); 3.10 (*s*, MeSO₂); 4.52 (*s*, NH); 5.95 (*s*, 1 H of benzothiazine); 6.76 (*t*, *J* = 7.5, 1 H); 6.92 (*d*, *J* = 7.5, 1 H); 6.96 (*d*, *J* = 7.5, 1 H); 7.14–7.17 (*m*, 2 H); 7.60 (*t*, *J* = 7.3, 1 H); 7.73 (*s*, 1 H); 8.07 (*d*, *J* = 8.0, 2 H); 8.15 (*s*, 1 H); 8.16 (*d*, *J* = 8.0, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.4; 38.1; 44.3; 57.8; 110.9; 117.9; 118.5; 119.7; 120.2; 127.2; 127.9; 128.0; 128.6; 129.3; 130.7; 134.3; 139.0; 140.0; 140.3; 140.7; 144.0; 152.0; 160.7; 190.4. Anal. calc. for C₂₆H₂₀BrNO₅S₂ (570.47): C 54.74, H 3.53, N 2.46; found: C 54.48, H 3.76, N 2.70.

*3-[2-[3-(Cyclopentyloxy)-4-methoxybenzoyl]-3,4-dihydro-3-methyl-*2H-*1,4-benzothiazin-3-yl]-*2H-*1-benzopyran-2-one* (**12b**). Yellow solid (411 mg, 78%). *trans*-Isomer. M.p. 99–101°. IR: 3378 (NH), 1712 (C=O). ¹H-NMR (CDCl₃): 1.75–1.82 (*m*, 4 H of cyclopentyl); 1.82–2.06 (*m*, 4 H of cyclopentyl); 1.88 (*s*, Me of benzothiazine); 3.88 (*s*, MeO); 4.60 (*s*, NH); 4.69–4.71 (*m*, CH–O of cyclopentyl); 5.64 (*s*, 1 H of benzothiazine); 6.75 (*t*, *J* = 7.5, 1 H); 6.84 (*d*, *J* = 8.2, 1 H); 6.92–6.94 (*m*, 2 H); 7.07–7.09 (*m*, 2 H); 7.25–7.27 (*m*, 2 H); 7.30 (*s*, 1 H); 7.50–7.52 (*m*, 2 H); 8.14 (*s*, 1 H). ¹³C-NMR (125 MHz, CDCl₃): 24.0; 27.7; 32.6; 37.0; 54.4; 56.0; 80.2; 110.4; 113.6; 116.0; 116.7; 118.8; 119.2; 119.8; 122.4; 124.4; 126.4; 127.2; 128.3; 129.1; 130.6; 131.3; 139.9; 140.1; 140.8; 147.6; 161.2; 163.6; 192.0. EI-MS: 527 (28, *M*⁺), 509 (21), 403 (40), 308 (92), 280 (100), 219 (50), 151(95), 41 (37). Anal. calc. for $C_{31}H_{29}NO_5S$ (527.63): C 70.57, H 5.54, N 2.65; found: C 70.33, H 5.62, N 2.37.

3-{3,4-Dihydro-3-methyl-2-[4-(methylsulfonyl)benzoyl]-2H-1,4-benzothiazin-3-yl]-7-hydroxy-2H-1benzopyran-2-one (**13a**). Yellow solid (153 mg, 30%). *cis*-Isomer. M.p. 154–157°. IR: 3398 (NH), 1708 (C=O), 1312 (SO₂), 1157 (SO₂). ¹H-NMR (CDCl₃): 1.80 (*s*, Me of benzothiazine); 3.10 (*s*, MeSO₂); 4.49 (br. *s*, NH); 5.67 (br. *s*, OH); 5.97 (*s*, 1 H of benzothiazine); 6.73–6.77 (*m*, 2 H); 6.84 (*s*, 1 H); 6.92–6.95 (*m*, 2 H); 7.15 (*t*, *J* = 7.5, 1 H); 7.29 (*d*, *J* = 8.5, 1 H); 7.73 (*s*, 1 H); 8.08 (*d*, *J* = 8.2, 2 H); 8.17 (*d*, *J* = 8.2, 2 H). ¹³C-NMR (125 MHz, CDCl₃): 24.5; 38.3; 44.3; 57.4; 102.5; 111.0; 113.2; 116.8; 119.3; 127.0; 127.2; 127.5; 127.9; 128.6; 129.3; 129.9; 139.7; 140.9; 141.3; 143.9; 154.9; 159.0; 161.52; 190.7. Anal. calc. for $C_{26}H_{21}NO_6S_2$ (507.58): C 61.52, H 4.17, N 2.76; found: C 61.31, H 4.42, N 2.49.

Supplementary Material. The ¹H- and ¹³C-NMR spectra of the new compounds and the crystal structure data for **10b** are available as supplementary material from the corresponding authors.

This work was financially supported by grants from *Research Council of Tehran*, University of Medical Sciences, and INSF (Iran National Science Foundation).

REFERENCES

- J. A. Gauthier, A. A. Asselin, CA Patent 1210396, 1986; *Chem. Abstr.* 1987, *106*, 176409; B. A. Dreikorn, US Patent 4001227, 1977; *Chem. Abstr.* 1977, *86*, 155674; S. Umio, K. Kariyone, T. Kishimoto, Jpn. Patent 45037020, 1970; *Chem. Abstr.* 1971, *74*, 76433; S. Umio, K. Kariyone, T. Kishimoto, Jpn. Patent 44027032, 1969; *Chem. Abstr.* 1970, *72*, 79068; T. Obayashi, A. Okawa, Jpn. Patent 2001253172, 2001; *Chem. Abstr.* 2001, *135*, 233952; T. Masanori, U. Motoo, S. Hiroyuki, I. Eiichi, Jpn. Patent 59197051, 1984; *Chem. Abstr.* 1985, *102*, 176471; S. Ishige, H. Usui, K. Saeki, Ger. Patent 2704724, 1977; *Chem. Abstr.* 1977, *87*, 144134; H. Usui, S. Ishige, K. Saeki, Ger. Patent 2658246, 1977; *Chem. Abstr.* 1977, *87*, 137318.
- [2] P. Di Donato, A. Napolitano, Pigment Cell. Res. 2003, 16, 532.
- [3] M. V. Kulkarni, V. D. Patil, V. N. Biradar, S. Nanjappa, Arch. Pharm. 1981, 314, 435; S. S. Hanmantgad, M. V. Kulkarni, V. D. Patil, Nat. Acad. Sci. Lett. 1984, 7, 77; G. M. Kulkarni, M. V. Kulkarni, V. D. Patil, D. B. Shridhar, M. Laxmana, Rev. Roum. Chim. 1990, 35, 549.
- [4] A. Berkessel, H. Gröger, D. MacMillan, 'Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis', Wiley-VCH, Weinheim, 2005; P. I. Dalko, 'Enantioselective Organocatalysis: Reactions and Experimental Procedures', Wiley-VCH, Weinheim, 2007.
- [5] T. P. Yoon, E. N. Jacobsen, *Science* 2003, 299, 1691; K. Matoba, H. Kawai, T. Furukawa, A. Kusuda, E. Tokunaga, S. Nakamura, M. Shiro, N. Shibata, *Angew. Chem., Int. Ed.* 2010, 49, 5762; H. Hiemstra, H. Wynberg, *J. Am. Chem. Soc.* 1981, 103, 417; H. Wynberg, *Top. Stereochem.* 1986, 16, 87; S.-K. Tian, Y. Chen, J. Hang, L. Tang, P. McDaid, L. Deng, *Acc. Chem. Res.* 2004, 37, 621; S. Saaby, M. Bella, K. A. Jørgensen, *J. Am. Chem. Soc.* 2004, 126, 8120; X. Liu, H. Li, L. Deng, *Org. Lett.* 2005, 7, 167; T. Marcelli, J. H. van Maarseveen, H. Hiemstra, *Angew. Chem.* 2006, 118, 7658; T. Marcelli, J. H. van Maarseveen, H. Hiemstra, *Angew. Chem.* 2006, 128, 7496; S. J. Connon, *Chem. Commun.* 2008, 2499; J. Wang, H. Li, L. Zu, W. Jiang, H. Xie, W. Duan, W. Wang, *J. Am. Chem. Soc.* 2006, 128, 12652; A. Russo, A. Perfetto, A. Lattanzi, *Adv. Synth. Catal.* 2009, 351, 3067.
- [6] S. H. Mashraqui, R. M. Kellogg, Tetrahedron Lett. 1985, 26, 1457.
- [7] M. R. Ganjali, S. Aghabalazadeh, M. Khoobi, A. Ramazani, A. Foroumadi, A. Shafiee, P. Norozi, *Int. J. Electrochem. Sci.* 2011, 6, 52; M. Khoobi, S. Emami, G. Dehghan, A. Foroumadi, A. Ramazani, A. Shafiee, *Arch. Pharm.* 2011, 344, 588.
- [8] F. N. Victoria, C. S. Radatz, M. Sachini, R. G. Jacob, G. Perin, W. P. da Silva, E. J. Lenardão, *Tetrahedron Lett.* 2009, 50, 6761.
- [9] Z.-W. Zhang, G. Lu, M.-M. Chen, N. Lin, Y.-B. Li, T. Hayashi, A. S. C. Chan, *Tetrahedron: Asymmetry* 2010, 21, 1715; J. Paradowska, M. Stodulski, J. Mlynarski, *Angew. Chem., Int. Ed.* 2009, 48, 4288; A. Fu, H. Li, H. Si, S. Yuan, Y. Duan, *Tetrahedron: Asymmetry* 2008, 19, 2285; G. K. Friestad, A. K. Mathies, *Tetrahedron* 2007, 63, 2541.
- [10] H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman, L. Deng, Angew. Chem., Int. Ed. 2004, 44, 105.
- [11] E. J. Corey, Y. Bo, J. Busch-Petersen, J. Am. Chem. Soc. 1998, 120, 13000.

Received September 11, 2011